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ABSTRACT 

In the construction on soft ground, settlement prediction is essential for effective treatment and 

mitigation. Soil compressibility is a crucial property for analyzing the settlement of soil layers under applied 

loads. The compression index is one of the crucial geotechnical parameters that quantifies soil deformation 

under load. The compression index represents the slope of the curve of the void ratio against the logarithm 

of the effective pressure. The conventional approach to determining the compression index through 

oedometer tests is both time-consuming and costly. This paper employs a dataset comprising laboratory 

soil data obtained from various tests, including Atterberg limit, oedometer, and moisture content tests, 

conducted on Alluvium soil samples from Malaysia. Additionally, relevant data from literature sources is 

incorporated to augment the analysis. The primary objective of this study is to develop predictive models 

for estimating the compression index using tree-based machine learning algorithms, namely random forest 

and gradient boosting tree. To evaluate the performance of these models, the results obtained from the 

machine learning models are compared with those derived from empirical formulas commonly used in the 

field. The findings show that the machine learning methods outperform the empirical formula in predicting 

compression index, indicating the potential of these techniques to determine geotechnical parameters. 
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1. Introduction  

In geotechnical design for the foundations, it is crucial to determine the compressibility of the soils as this 

factor plays an important role for the settlement of the soil layers due to external load. Soil compressibility 

refers to the reduction in volume experienced by soils due to the drainage of pore water when subjected to 

a load (Craig and Knappett, 2012). To calculate the compressibility of soils, several key parameters need 
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to be determined, including the compression index (cc), coefficient of compressibility (cv), and coefficient 

of volume change (mv). In order to determine the consolidation parameters of fine-grained soil, there is a 

need to conduct Oedometer tests. However, the process of carrying out this test is time-consuming and 

costly (Ozer et al., 2008). In addition, sample preparation is a real challenge for this test in the laboratory. 

In the field of geotechnical engineering, practising engineers employ correlations and empirical 

relationships to estimate geotechnical parameters, including the cc. Many researchers  have used various 

soil parameters to correlate with cc such as water content, liquid limit, plasticity index and void ratio 

(Skempton and Jones, 1944; Huang et al., 2019; Mandhour, 2020). In addition, researchers also employed 

the Atterberg limit test to establish correlations between soil properties and geotechnical engineering 

characteristics (Shouka, 1964; Yoon et al., 2004)). This test is particularly useful as it serves as an initial 

characterization of the soils. Moreover, the plasticity-related parameters are influenced by the electro-

chemical behavior of clay minerals, which subsequently impact water retention potential and mechanical 

properties of the soil (Carter and Bentley, 1991). Many studies have used traditional statistical methods to 

develop the empirical formulas with several assumptions. Notably, the Atterberg limit is consistently 

incorporated into these formulas as a significant contributing factor.  

 

Due to the rapid development of machine learning (ML), many researchers have started to integrate ML 

application in geotechnical engineering such as prediction of pile capacity (Khanmohammadi et al., 2022), 

slope stability  (Lin et al., 2018), determination of geotechnical parameters (Pham et al., 2021) tunnelling  

(Armaghani et al., 2017; Zhou et al., 2020) and many more. The use of ML for prediction of cc has been 

explored by several techniques such as Artificial Neural Network (ANN) by Park and Lee (2011) and 

Expression Programming by Mohammadzadeh et al. (2014). However, these techniques include some 

drawbacks such as getting trapped in local minima and slow convergence (Gordan et al., 2016; Hasanipanah 

et al., 2016). On the other hand, tree-based ML techniques, such as Random Forest (RF) and Gradient 

Boosting Tree (GBT), have been successfully applied in many geotechnical applications with high level of 

performance (Li et al., 2022; Liu et al., 2022; Yari et al., 2023). This due to their ability to: (i) avoid 

subjective uncertainty, (ii) handle large data points at greater modelling speed, (iii) select the most 

influential factors on output, and (iv) visualize nonlinear data.  

 

In this paper, we aim to compare the performance of RF, GBT and empirical formulas for predicting the cc.  

A dataset comprising 116 observations from Oedometer, Atterberg limit, and moisture content tests 

conducted on the Alluvium formation in Malaysia will be utilized for predicting the cc. Additionally, 

supplementary data from  Mandhour (2020) will be incorporated to further enhance the analysis. The 

combined dataset will facilitate a comprehensive evaluation of the cc prediction models, considering a 

broader range of samples. 

 

 

2. Review of previous studies   

Numerous researchers have conducted studies on the prediction of the cc for various soil types, employing 

empirical formulas that utilize different parameters. These parameters include liquid limit, natural water 

content, plasticity index, void ratio, and multiple variables. A compilation of such empirical formulas, along 

with their corresponding parameters, is presented in Table 1, providing a general overview of the existing 

empirical formula in this area. 
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Table 1. Empirical formula computation for computation of cc using various parameters 

No Author Equation (s) Type of Soils 

Liquid Limit 

1 Shouka (1964) 𝐶𝑐 = 0.017 (𝐿𝐿 − 20) All clays 

2 Terzaghi and 

Peck (1967) 
𝐶𝑐 = 0.009 (𝐿𝐿 − 10) Normally consolidated 

clay 

Plasticity index 

3 Wroth and 

Wood (1978) 
𝐶𝑐 =  

𝑃𝐼

74
 

All clays 

4 Yoon et al 

(2004) 
𝐶𝑐 = 0.014(𝑃𝐼) + 0.165 Busan clay 

Moisture Content 

5 Rutledge 

(1958) 
𝐶𝑐 = 0.0115 (𝑀𝐶) Soft clays 

6 Bowles (1979) 𝐶𝑐 = 0.115 (𝑀𝐶) Organic silts and clays 

Void ratio 

7 Rendon-

Herrero (1980) 
𝐶𝑐 = 0.3(𝑒𝑜 − 0.27) All soil types 

8 Yoon et al. 

(2004) 
𝐶𝑐 = 0.39(𝑒𝑜 − 0.13) Busan clay 

Multiple variables 

9 Koppula 

(1981) 
𝐶𝑐 = 0.009(𝑀𝐶) + 0.005(𝐿𝐿) All clays 

10 Yoon et al. 

(2004) 
𝐶𝑐 = −0.194𝑒𝑜 + 0.0098𝐿𝐿 − 0.0025𝑃𝐼 − 0.256 Busan clay 

 
 

Table 1 reveals that most of the studies have employed empirical prediction equations derived from linear 

or multiple linear regression analysis. The utilization of regression analysis entails certain limitations and 

uncertainties due to the inherent simplification of the model. Conventional regression methods, such as 

linear and multiple regression, assume a predefined relationship between the input and output. This 

assumption inherently imposes constraints on the model's flexibility and may introduce potential limitations 

in capturing complex relationships within the data. Moreover, researchers have also explored the 

application of various ML models for predicting the cc, as shown in Table 2. The outcomes indicate that 

different ML models exhibit diverse prediction capabilities and demonstrate promising potential in 

estimating cc. This highlights the effectiveness of ML techniques in enhancing the prediction accuracy and 

performance compared to traditional empirical formulas or regression-based approaches. 
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Table 2. AI Method prediction of Compression index 

Author (s) ML No Data Predictor (s)  Performance of 

the prediction 

testing dataset 

Mohammadzadeh 

S et al. (2016) 

Multi-gene genetic 

programming 

101 𝑒𝑜, LL and PL R2 = 0.840  

Mohammadzadeh 

S et al. (2019) 

Gene Expression 

Programming  

108 𝑒𝑜, LL and PL R2 = 0.860 

Park and Lee 

(2011) 

Artificial Neural 

Network  

947 MC, 𝑒𝑜, LL, PI, 

Gs , wsand, wsilt, wclay  

R2 = 0.885 

Mohammadzadeh 

et al. (2014) 

Expression 

programming 

101 𝑒𝑜, LL and PL R2 = 0.812 

Fikret Kurnaz 

and Kaya (2018) 

Extreme Learning 

Machine (ELM) 

Bayesian 

Regularisation Neural 

Network (BRNN) 

Support Vector 

Machine (SVM) 

351 MC, 𝑒𝑜, LL, PI ELM, R2 = 0.890 

SVM, R2 = 0.915 

BRNN, R2 = 0.915  

where Gs is specific gravity, wsand is percentage of sand wsilt is percentage of silt wclay is percentage of clay, 

R2 is coefficient of determination.   

 

 

 

3. Model background 

3.1 Random Forest (RF) 

Random Forest (RF) is a versatile algorithm capable of solving both classification and regression problems. 

Introduced by Breiman (2001) , RF combines decision trees by generating each tree from a random vector 

sample independently. This randomness helps overcome the limited generalization ability of a single 

decision tree. Bagging, which involves bootstrapping the training data, and random feature selection are 

integral parts of RF. In classification tasks, RF predicts the class by majority voting among the individual 

trees. For regression tasks, the predictions from each tree are averaged to obtain the result. By combining 

the predictions of multiple trees, RF improves accuracy and robustness. RF's performance is influenced by 

several hyperparameters, such as the number of decision trees (ntree) and the maximum depth of tree 

(max_depth). To identify the optimal hyperparameters, a grid search method can be employed. Grid search 

exhaustively explores all combinations of hyperparameters to find the best configuration of the 

hyperparameters. In the context of this study, the range of ntree values considered is (50, 100, 150, 200, 

250, 300, 350, 400, 450, and 500), while max_depth values range from 2 to 10 at interval of 2. By 

systematically evaluating these hyperparameters based on grid search method, the optimal combination for 

these hyperparameter can be identified.   

 

3.2 Gradient Boosting Tree (GBT) 

Introduced by Friedman (2001), GBT builds decision trees in a sequential manner, where each subsequent 

tree is trained to correct the errors made by the previous trees. The key idea behind GBT is to iteratively fit 

the new trees to the negative gradient of the loss function of the previous trees' predictions. This process 

helps to improve the overall model's performance with each iteration. During the training phase, GBT starts 

with an initial model, usually a weak learner like a shallow decision tree. Subsequent trees are then added 
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to the ensemble by minimizing a loss function that quantifies the discrepancy between the predicted values 

and the true values. The learning process is guided by optimization techniques such as gradient descent, 

which updates the model's parameters to minimize the loss function. To make a prediction using the trained 

Gradient Boosting Tree, the individual trees' predictions are combined by weighted averaging or summation. 

The weights reflect the importance of each tree's contribution to the final prediction. The result is obtained 

by summing up the predictions from all the trees. GBT also involves hyperparameter tuning to achieve 

optimal performance. The hyperparameters that require tuning for GBT, such as ntree and max_depth have 

similar ranges as RF. Additionally, GBT incorporates an additional hyperparameter, learning rate, which 

will be explored within the range of 0.001, 0.01, 0.1, 0.2, and 0.3. Similarly with RF, this ML model will 

be using grid search.  

 

4. Data and parameters 

Liquid Limit (LL) is the moisture content (%) at which a soil transitions from a plastic state to liquid state 

whereas Plastic Limit (PL) is the moisture content (%) at which the soil changes from semi solid to solid 

state. The difference between liquid limit and the plastic limit is known as the plasticity index (PI = LL - 

PL), which provides an indication of the soil's plasticity. Void ratio (e) is the ratio of the volume of voids 

to the volume of solids in a soil sample. It is an indicator of the soil's porosity and its ability to compress 

under load. Soil compressibility is the volume reduction under load of pore water drainage. cc is a measure 

of the compressibility of a soil. It can be obtained from the slope of the curve void ratio versus logarithm 

of effective pressure. Some of the factors affect the compression index such as grain size of the soils, 

plasticity, and overburden pressure. Fine-grained soils, such as clays, have a higher compression index than 

coarse-grained soils, such as sands. This is because fine-grained soils have larger surface area, which allow 

to absorb more water and swell. Soils with high plasticity index is prone to deformation by stress. Increasing 

overburden pressure leads to tighter packing of soil particles, resulting in a reduction of void ratio. Since 

the Atterberg limits is the measure of plasticity of the soil and void ratio amount of the voids in the soil, 

thus, these parameters affect the compression index.  The natural moisture content (MC) refers to the 

moisture content of the soil in its undisturbed state, without any external addition or removal of water. Since 

water content affects the soil's particle fill, it can be one of the factors influencing compressibility. 

Furthermore, based on the information presented in Table 1 and Table 2 , it is evident that the authors in 

previous studies utilized parameters such as LL, PL, eo, and MC to determine the cc. Therefore, these 

parameters will be considered in these analyses. The analysis will incorporate a total of 116 laboratory test 

data points, including Atterberg limit, Moisture Content test, and Oedometer test data, obtained from the 

Alluvium formation of Malaysia for Analysis 1. In Analysis 2, soil data from Malaysia will be combined 

with the soil data from Al-Nasiriya city provided by Mandhour (2020) to augment the dataset for the 

analysis model and add variety range of soil. Table 3 summarizes two types of predictors that will be used 

to predict the cc.  
 

Table 3. Two different analyses of predictors used for the prediction of the cc. 

Analysis Predictors No of Data 

1 𝑒𝑜, LL , PL and MC 116 

2 𝑒𝑜, LL , PL 137 

 

 

5. Analysis and results  

For the purpose of RF and GBT analysis, the database will be divided into two subsets: 80% training dataset 

and 20% testing dataset. To address the limitations imposed by small-sized datasets when splitting into 

training and testing sets, a robust technique called k-fold cross-validation (CV) is employed. In k-fold CV, 
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the original dataset is randomly partitioned into k subsets or folds. Subsequently, k-1 folds are utilized for 

training the model, while the remaining fold is used for validation. This process is repeated k times, with 

each fold serving as the validation set once. By averaging the prediction errors across the k subsets, the 

model's performance can be accurately evaluated. K-fold CV maximizes the utilization of available data as 

every part of the original dataset is randomly assigned to both training and testing, enhancing the reliability 

of the model construction and validation process. In this study, a 10-fold CV approach was adopted. For 

each 10th CVs have been carried out, different hyperparameter is used using grid search method to determine 

the optimum hyperparameter. Each of the hyperparameter will be assessed for the accuracy based on the 

coefficient of determination, R2. Figure 1 illustrates the mechanism of the cross validations.  

 

Figure 1. Illustration of the cross-validation mechanism 

 
Using the grid search method, the optimal hyperparameters for Analysis 1 are found to be max_depth = 2 

and n_tree = 100 for RF, and learning_rate = 0.01, max_depth = 2, and n_tree = 150 for GBT. Similarly, 

for Analysis 2, the optimal hyperparameters are determined as max_depth = 2 and n_tree = 100 for RF, and 

learning_rate = 0.01, max_depth = 2, and n_tree = 250 for GBT. These optimum hyperparameters shall be 

used for the testing datasets. Figure 2 and Figure 3 display the prediction capabilities of RF and GBT for 

Analysis 1 and 2 respectively. Additionally, Figure 4 illustrates the relationship between computed 

compression index using empirical formulas (Shouka, 1964; Wroth and Wood, 1978; Rendon-Herrero, 

1980) and the measured compression index.  
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Figure 2. RF Prediction model for Analysis 1 and 2 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. GBT Prediction model for Analysis 1 and 2 
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Figure 4. Measured and computed compression index 

 

The comparison of prediction performance based on R2, as observed from Figure 3, Figure 4 and Figure 4 

clearly indicates that the RF and GBT models outperform the empirical formula in predicting the 

compression index. Moreover, when comparing RF and GBT, it becomes evident that GBT exhibits 

superior predictive capabilities. Furthermore, the predictors LL, PL, and eo, when considered together, yield 

significant findings for computing the compression index. This implies that the inclusion of MC is not 

necessarily required for predicting the compression index. Notably, other authors (Mohammadzadeh et al., 

2016, 2019) have also utilized these three parameters (LL, PL, and eo) in combination with different ML 

models, and have achieved promising predictive results. Lastly, it was observed that Analysis 2, which 

utilized a larger dataset, demonstrated superior prediction performance compared to Analysis 1. This 

finding suggests that a greater amount of data is essential for establishing more accurate predictions using 

both ML models and empirical formulas. The improved performance in Analysis 2 highlights the 

significance of a comprehensive and diverse dataset in training ML models, enabling them to capture the 

underlying patterns and relationships more effectively. Additionally, it emphasizes the importance of 

considering larger datasets when developing ML models and empirical formulas to enhance the predictive 

capabilities. This insight underscores the value of data quantity and quality in achieving more reliable and 

precise predictions in geotechnical engineering applications. 

 

 

6. Conclusions and future studies  

In conclusion, this study explored the application of Random Forest (RF) and Gradient Boosting Tree (GBT) 

models for predicting the Soil Compression Index (cc) and compared the performance against empirical 

formulas where the conclusion are as follows: 

 

1) Both RF and GBT models exhibited better predictive capabilities compared to traditional empirical 

formulas. Notably, GBT displayed even stronger predictive power than RF, highlighting its 

potential as a preferred choice for determining the cc parameter. 

2) Furthermore, the findings suggest that tree-based machine learning models, particularly GBT, can 

effectively utilize parameters such as Atterberg limits (liquid limit and plastic limit) and void ratio 

to accurately predict the Soil Compression Index. This finding enhances our understanding of the 

essential factors contributing to soil compression behavior and emphasizes the importance of 

incorporating comprehensive soil properties in predictive models. 
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3) It is crucial to acknowledge that further data collection and testing are necessary to optimize the 

predictive accuracy of the machine learning model for the cc. The inclusion of more diverse and 

extensive datasets from various soil types and environmental conditions would help ensure the 

model's robustness and generalizability for real-world applications. 

 

Lastly, other tree based techmiques such as Extreme Gradient Boosting Tree, Adaboost and Categorical 

Boosting can be considered to further explores by different researchers in order to establish robust ML 

moed. However, it is imperative to emphasize the importance of acquiring more diverse and extensive 

datasets before inputting these ML models. 
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